Increased levels of the acetaldehyde-derived DNA adduct N 2-ethyldeoxyguanosine in oral mucosa DNA from Rhesus monkeys exposed to alcohol.
نویسندگان
چکیده
Alcohol is a human carcinogen. A causal link has been established between alcohol drinking and cancers of the upper aerodigestive tract, colon, liver and breast. Despite this established association, the underlying mechanisms of alcohol-induced carcinogenesis remain unclear. Various mechanisms may come into play depending on the type of cancer; however, convincing evidence supports the concept that ethanol's major metabolite acetaldehyde may play a major role. Acetaldehyde can react with DNA forming adducts which can serve as biomarkers of carcinogen exposure and potentially of cancer risk. The major DNA adduct formed from this reaction is N (2)-ethylidenedeoxyguanosine, which can be quantified as its reduced form N (2)-ethyl-dG by LC-ESI-MS/MS. To investigate the potential use of N (2)-ethyl-dG as a biomarker of alcohol-induced DNA damage, we quantified this adduct in DNA from the oral, oesophageal and mammary gland tissues from rhesus monkeys exposed to alcohol drinking over their lifetimes and compared it to controls. N (2)-Ethyl-dG levels were significantly higher in the oral mucosa DNA of the exposed animals. Levels of the DNA adduct measured in the oesophageal mucosa of exposed animals were not significantly different from controls. A correlation between the levels measured in the oral and oesophageal DNA, however, was observed, suggesting a common source of formation of the DNA adducts. N (2) -Ethyl-dG was measured in mammary gland DNA from a small cohort of female animals, but no difference was observed between exposed animals and controls. These results support the hypothesis that acetaldehyde induces DNA damage in the oral mucosa of alcohol-exposed animals and that it may play role in the alcohol-induced carcinogenic process. The decrease of N (2)-ethyl-dG levels in exposed tissues further removed from the mouth also suggests a role of alcohol metabolism in the oral cavity, which may be considered separately from ethanol liver metabolism in the investigation of ethanol-related cancer risk.
منابع مشابه
Kinetics of DNA adduct formation in the oral cavity after drinking alcohol.
BACKGROUND Alcohol consumption is one of the top 10 risks for the worldwide burden of disease and an established cause of head and neck cancer, as well as cancer at other sites. Acetaldehyde, the major metabolite of ethanol, reacts with DNA to produce adducts, which are critical in the carcinogenic process and can serve as biomarkers of exposure and, possibly, of disease risk. Acetaldehyde asso...
متن کاملAlcohol-Derived Acetaldehyde Exposure in the Oral Cavity
Alcohol is classified by the International Agency for Research on Cancer (IARC) as a human carcinogen and its consumption has been associated to an increased risk of liver, breast, colorectum, and upper aerodigestive tract (UADT) cancers. Its mechanisms of carcinogenicity remain unclear and various hypotheses have been formulated depending on the target organ considered. In the case of UADT can...
متن کاملAlcohol Abuse and Oral Cancer
Background: Various medical, psychiatric and social problems affecting alcohol abuser tend to overshadow their oral health. From an epidemiologic viewpoint, chronic consumption of alcoholic beverages is associated with an increased risk for the upper gastrointestinal tract cancer, and tobacco and alcohol are regarded as the major risk factors for oral cancer. The objective of this presentation ...
متن کاملStability of acetaldehyde-derived DNA adduct in vitro.
Acetaldehyde (AA) derived from alcoholic beverages is a confirmed carcinogen for esophageal and head and neck cancers. AA forms various DNA adducts and is thought to play a crucial role in carcinogenesis. Transient DNA adducts are usually repaired, but the stability of AA-derived DNA adducts has not been elucidated. We investigated the stability of N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethyli...
متن کاملThe Effect of Electrical Fields from High-Voltage Transmission Line on Cognitive Changes in Male Rhesus Macaque Monkeys: A Biological and Anatomical Study Using MRI Case Report Study
Living near high-voltage power lines and exposure to high-frequency electromagnetic fields (EMFs) is a potential serious hazard to animal and human health. The present study was carried out to evaluate the effect of high-frequency EMFs from simulated high-voltage electric towers on cognitive, anatomical, and biological changes in male Macaque. In this study, two Rhesus Macaque were recruited, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mutagenesis
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2016